Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Chasing Convex Bodies and Functions with Black-Box Advice (2206.11780v1)

Published 23 Jun 2022 in cs.LG, cs.DS, math.OC, and stat.ML

Abstract: We consider the problem of convex function chasing with black-box advice, where an online decision-maker aims to minimize the total cost of making and switching between decisions in a normed vector space, aided by black-box advice such as the decisions of a machine-learned algorithm. The decision-maker seeks cost comparable to the advice when it performs well, known as $\textit{consistency}$, while also ensuring worst-case $\textit{robustness}$ even when the advice is adversarial. We first consider the common paradigm of algorithms that switch between the decisions of the advice and a competitive algorithm, showing that no algorithm in this class can improve upon 3-consistency while staying robust. We then propose two novel algorithms that bypass this limitation by exploiting the problem's convexity. The first, INTERP, achieves $(\sqrt{2}+\epsilon)$-consistency and $\mathcal{O}(\frac{C}{\epsilon2})$-robustness for any $\epsilon > 0$, where $C$ is the competitive ratio of an algorithm for convex function chasing or a subclass thereof. The second, BDINTERP, achieves $(1+\epsilon)$-consistency and $\mathcal{O}(\frac{CD}{\epsilon})$-robustness when the problem has bounded diameter $D$. Further, we show that BDINTERP achieves near-optimal consistency-robustness trade-off for the special case where cost functions are $\alpha$-polyhedral.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.