Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning To Generate Scene Graph from Head to Tail (2206.11653v1)

Published 23 Jun 2022 in cs.CV

Abstract: Scene Graph Generation (SGG) represents objects and their interactions with a graph structure. Recently, many works are devoted to solving the imbalanced problem in SGG. However, underestimating the head predicates in the whole training process, they wreck the features of head predicates that provide general features for tail ones. Besides, assigning excessive attention to the tail predicates leads to semantic deviation. Based on this, we propose a novel SGG framework, learning to generate scene graphs from Head to Tail (SGG-HT), containing Curriculum Re-weight Mechanism (CRM) and Semantic Context Module (SCM). CRM learns head/easy samples firstly for robust features of head predicates and then gradually focuses on tail/hard ones. SCM is proposed to relieve semantic deviation by ensuring the semantic consistency between the generated scene graph and the ground truth in global and local representations. Experiments show that SGG-HT significantly alleviates the biased problem and chieves state-of-the-art performances on Visual Genome.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.