Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Sensing and Measurements Reuse for Image Compressed Sensing (2206.11629v1)

Published 23 Jun 2022 in cs.CV and eess.IV

Abstract: Recently, deep network-based image compressed sensing methods achieved high reconstruction quality and reduced computational overhead compared with traditional methods. However, existing methods obtain measurements only from partial features in the network and use them only once for image reconstruction. They ignore there are low, mid, and high-level features in the network\cite{zeiler2014visualizing} and all of them are essential for high-quality reconstruction. Moreover, using measurements only once may not be enough for extracting richer information from measurements. To address these issues, we propose a novel Measurements Reuse Convolutional Compressed Sensing Network (MR-CCSNet) which employs Global Sensing Module (GSM) to collect all level features for achieving an efficient sensing and Measurements Reuse Block (MRB) to reuse measurements multiple times on multi-scale. Finally, experimental results on three benchmark datasets show that our model can significantly outperform state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zi-En Fan (1 paper)
  2. Feng Lian (1 paper)
  3. Jia-Ni Quan (1 paper)
Citations (15)

Summary

We haven't generated a summary for this paper yet.