Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CGAR: Critic Guided Action Redistribution in Reinforcement Leaning (2206.11494v1)

Published 23 Jun 2022 in cs.LG

Abstract: Training a game-playing reinforcement learning agent requires multiple interactions with the environment. Ignorant random exploration may cause a waste of time and resources. It's essential to alleviate such waste. As discussed in this paper, under the settings of the off-policy actor critic algorithms, we demonstrate that the critic can bring more expected discounted rewards than or at least equal to the actor. Thus, the Q value predicted by the critic is a better signal to redistribute the action originally sampled from the policy distribution predicted by the actor. This paper introduces the novel Critic Guided Action Redistribution (CGAR) algorithm and tests it on the OpenAI MuJoCo tasks. The experimental results demonstrate that our method improves the sample efficiency and achieves state-of-the-art performance. Our code can be found at https://github.com/tairanhuang/CGAR.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com