Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Complementary datasets to COCO for object detection (2206.11473v1)

Published 23 Jun 2022 in cs.CV

Abstract: For nearly a decade, the COCO dataset has been the central test bed of research in object detection. According to the recent benchmarks, however, it seems that performance on this dataset has started to saturate. One possible reason can be that perhaps it is not large enough for training deep models. To address this limitation, here we introduce two complementary datasets to COCO: i) COCO_OI, composed of images from COCO and OpenImages (from their 80 classes in common) with 1,418,978 training bounding boxes over 380,111 images, and 41,893 validation bounding boxes over 18,299 images, and ii) ObjectNet_D containing objects in daily life situations (originally created for object recognition known as ObjectNet; 29 categories in common with COCO). The latter can be used to test the generalization ability of object detectors. We evaluate some models on these datasets and pinpoint the source of errors. We encourage the community to utilize these datasets for training and testing object detection models. Code and data is available at https://github.com/aliborji/COCO_OI.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)