Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a class of geodesically convex optimization problems solved via Euclidean MM methods (2206.11426v2)

Published 22 Jun 2022 in math.OC and cs.LG

Abstract: We study geodesically convex (g-convex) problems that can be written as a difference of Euclidean convex functions. This structure arises in several optimization problems in statistics and machine learning, e.g., for matrix scaling, M-estimators for covariances, and Brascamp-Lieb inequalities. Our work offers efficient algorithms that on the one hand exploit g-convexity to ensure global optimality along with guarantees on iteration complexity. On the other hand, the split structure permits us to develop Euclidean Majorization-Minorization algorithms that help us bypass the need to compute expensive Riemannian operations such as exponential maps and parallel transport. We illustrate our results by specializing them to a few concrete optimization problems that have been previously studied in the machine learning literature. Ultimately, we hope our work helps motivate the broader search for mixed Euclidean-Riemannian optimization algorithms

Citations (4)

Summary

We haven't generated a summary for this paper yet.