Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis and simulation of a variational stabilization for the Helmholtz equation with noisy Cauchy data (2206.11323v2)

Published 22 Jun 2022 in math.NA, cs.NA, math-ph, and math.MP

Abstract: This article considers a Cauchy problem of Helmholtz equations whose solution is well known to be exponentially unstable with respect to the inputs. In the framework of variational quasi-reversibility method, a Fourier truncation is applied to appropriately perturb the underlying problem, which allows us to obtain a stable approximate solution. The corresponding approximate problem is of a hyperbolic equation, which is also a crucial aspect of this approach. Error estimates between the approximate and true solutions are derived with respect to the noise level. From this analysis, the Lipschitz stability with respect to the noise level follows. Some numerical examples are provided to see how our numerical algorithm works well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.