Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and simulation of a variational stabilization for the Helmholtz equation with noisy Cauchy data (2206.11323v2)

Published 22 Jun 2022 in math.NA, cs.NA, math-ph, and math.MP

Abstract: This article considers a Cauchy problem of Helmholtz equations whose solution is well known to be exponentially unstable with respect to the inputs. In the framework of variational quasi-reversibility method, a Fourier truncation is applied to appropriately perturb the underlying problem, which allows us to obtain a stable approximate solution. The corresponding approximate problem is of a hyperbolic equation, which is also a crucial aspect of this approach. Error estimates between the approximate and true solutions are derived with respect to the noise level. From this analysis, the Lipschitz stability with respect to the noise level follows. Some numerical examples are provided to see how our numerical algorithm works well.

Summary

We haven't generated a summary for this paper yet.