Constant-Factor Approximation Algorithms for Socially Fair $k$-Clustering (2206.11210v1)
Abstract: We study approximation algorithms for the socially fair $(\ell_p, k)$-clustering problem with $m$ groups, whose special cases include the socially fair $k$-median ($p=1$) and socially fair $k$-means ($p=2$) problems. We present (1) a polynomial-time $(5+2\sqrt{6})p$-approximation with at most $k+m$ centers (2) a $(5+2\sqrt{6}+\epsilon)p$-approximation with $k$ centers in time $n{2{O(p)}\cdot m2}$, and (3) a $(15+6\sqrt{6})p$ approximation with $k$ centers in time $k{m}\cdot\text{poly}(n)$. The first result is obtained via a refinement of the iterative rounding method using a sequence of linear programs. The latter two results are obtained by converting a solution with up to $k+m$ centers to one with $k$ centers using sparsification methods for (2) and via an exhaustive search for (3). We also compare the performance of our algorithms with existing bicriteria algorithms as well as exactly $k$ center approximation algorithms on benchmark datasets, and find that our algorithms also outperform existing methods in practice.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.