On-the-fly control of unknown nonlinear systems with sublinear regret (2206.11103v1)
Abstract: We study the problem of data-driven, constrained control of unknown nonlinear dynamics from a single ongoing and finite-horizon trajectory. We consider a one-step optimal control problem with a smooth, black-box objective, typically a composition of a known cost function and the unknown dynamics. We investigate an on-the-fly control paradigm, i.e., at each time step, the evolution of the dynamics and the first-order information of the cost are provided only for the executed control action. We propose an optimization-based control algorithm that iteratively minimizes a data-driven surrogate function for the unknown objective. We prove that the proposed approach incurs sublinear cumulative regret (step-wise suboptimality with respect to an optimal one-step controller) and is worst-case optimal among a broad class of data-driven control algorithms. We also present tractable reformulations of the approach that can leverage off-the-shelf solvers for efficient implementations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.