Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

List-Decodable Covariance Estimation (2206.10942v1)

Published 22 Jun 2022 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We give the first polynomial time algorithm for \emph{list-decodable covariance estimation}. For any $\alpha > 0$, our algorithm takes input a sample $Y \subseteq \mathbb{R}d$ of size $n\geq d{\mathsf{poly}(1/\alpha)}$ obtained by adversarially corrupting an $(1-\alpha)n$ points in an i.i.d. sample $X$ of size $n$ from the Gaussian distribution with unknown mean $\mu_$ and covariance $\Sigma_$. In $n{\mathsf{poly}(1/\alpha)}$ time, it outputs a constant-size list of $k = k(\alpha)= (1/\alpha){\mathsf{poly}(1/\alpha)}$ candidate parameters that, with high probability, contains a $(\hat{\mu},\hat{\Sigma})$ such that the total variation distance $TV(\mathcal{N}(\mu_,\Sigma_),\mathcal{N}(\hat{\mu},\hat{\Sigma}))<1-O_{\alpha}(1)$. This is the statistically strongest notion of distance and implies multiplicative spectral and relative Frobenius distance approximation for parameters with dimension independent error. Our algorithm works more generally for $(1-\alpha)$-corruptions of any distribution $D$ that possesses low-degree sum-of-squares certificates of two natural analytic properties: 1) anti-concentration of one-dimensional marginals and 2) hypercontractivity of degree 2 polynomials. Prior to our work, the only known results for estimating covariance in the list-decodable setting were for the special cases of list-decodable linear regression and subspace recovery due to Karmarkar, Klivans, and Kothari (2019), Raghavendra and Yau (2019 and 2020) and Bakshi and Kothari (2020). These results need superpolynomial time for obtaining any subconstant error in the underlying dimension. Our result implies the first polynomial-time \emph{exact} algorithm for list-decodable linear regression and subspace recovery that allows, in particular, to obtain $2{-\mathsf{poly}(d)}$ error in polynomial-time. Our result also implies an improved algorithm for clustering non-spherical mixtures.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.