Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Study on Modularity Density Maximization: Column Generation Acceleration and Computational Complexity Analysis (2206.10901v1)

Published 22 Jun 2022 in cs.SI, cs.DM, and cs.DS

Abstract: Community detection is a fundamental network-analysis primitive with a variety of applications in diverse domains. Although the modularity introduced by Newman and Girvan (2004) has widely been used as a quality function for community detection, it has some drawbacks. The modularity density introduced by Li et al. (2008) is known to be an effective alternative to the modularity, which mitigates one of the drawbacks called the resolution limit. A large body of work has been devoted to designing exact and heuristic methods for modularity density maximization, without any computational complexity analysis. In this study, we investigate modularity density maximization from both algorithmic and computational complexity aspects. Specifically, we first accelerate column generation for the modularity density maximization problem. To this end, we point out that the auxiliary problem appearing in column generation can be viewed as a dense subgraph discovery problem. Then we employ a well-known strategy for dense subgraph discovery, called the greedy peeling, for approximately solving the auxiliary problem. Moreover, we reformulate the auxiliary problem to a sequence of $0$--$1$ linear programming problems, enabling us to compute its optimal value more efficiently and to get more diverse columns. Computational experiments using a variety of real-world networks demonstrate the effectiveness of our proposed algorithm. Finally, we show the NP-hardness of a slight variant of the modularity density maximization problem, where the output partition has to have two or more clusters, as well as showing the NP-hardness of the auxiliary problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.