Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The Covering Radius of the Third-Order Reed-Muller Code RM(3,7) is 20 (2206.10881v3)

Published 22 Jun 2022 in cs.IT, cs.DM, and math.IT

Abstract: We prove the covering radius of the third-order Reed-Muller code RM(3,7) is 20, which was previously known to be between 20 and 23 (inclusive). The covering radius of RM(3, 7) is the maximum third-order nonlinearity among all 7-variable Boolean functions. It was known that there exist 7-variable Boolean functions with third-order nonlinearity 20. We prove the third-order nonlinearity cannot achieve 21. According to the classification of the quotient space of RM(6,6)/RM(3,6), we classify all 7-variable Boolean functions into 66 types. Firstly, we prove 62 types (among 66) cannot have third-order nonlinearity 21; Secondly, we prove function of the remaining 4 types can be transformed into a type (6, 10) function, if its third-order nonlinearity is 21; Finally, we transform type (6, 10) functions into a specific form, and prove the functions in that form cannot achieve third-order nonlinearity 21 (with the assistance of computers). By the way, we prove that the affine transformation group over any finite field can be generated by two elements.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.