Papers
Topics
Authors
Recent
2000 character limit reached

MultiEarth 2022 Deforestation Challenge -- ForestGump (2206.10831v1)

Published 22 Jun 2022 in cs.CV and eess.IV

Abstract: The estimation of deforestation in the Amazon Forest is challenge task because of the vast size of the area and the difficulty of direct human access. However, it is a crucial problem in that deforestation results in serious environmental problems such as global climate change, reduced biodiversity, etc. In order to effectively solve the problems, satellite imagery would be a good alternative to estimate the deforestation of the Amazon. With a combination of optical images and Synthetic aperture radar (SAR) images, observation of such a massive area regardless of weather conditions become possible. In this paper, we present an accurate deforestation estimation method with conventional UNet and comprehensive data processing. The diverse channels of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to train deep neural networks. With the proposed method, deforestation status for novel queries are successfully estimated with high accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.