Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Metric Color Embeddings for Splicing Localization in Severely Degraded Images (2206.10737v1)

Published 21 Jun 2022 in cs.CV and cs.MM

Abstract: One common task in image forensics is to detect spliced images, where multiple source images are composed to one output image. Most of the currently best performing splicing detectors leverage high-frequency artifacts. However, after an image underwent strong compression, most of the high frequency artifacts are not available anymore. In this work, we explore an alternative approach to splicing detection, which is potentially better suited for images in-the-wild, subject to strong compression and downsampling. Our proposal is to model the color formation of an image. The color formation largely depends on variations at the scale of scene objects, and is hence much less dependent on high-frequency artifacts. We learn a deep metric space that is on one hand sensitive to illumination color and camera white-point estimation, but on the other hand insensitive to variations in object color. Large distances in the embedding space indicate that two image regions either stem from different scenes or different cameras. In our evaluation, we show that the proposed embedding space outperforms the state of the art on images that have been subject to strong compression and downsampling. We confirm in two further experiments the dual nature of the metric space, namely to both characterize the acquisition camera and the scene illuminant color. As such, this work resides at the intersection of physics-based and statistical forensics with benefits from both sides.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.