Papers
Topics
Authors
Recent
2000 character limit reached

Signature Codes for a Noisy Adder Multiple Access Channel (2206.10735v2)

Published 21 Jun 2022 in cs.IT and math.IT

Abstract: In this work, we consider $q$-ary signature codes of length $k$ and size $n$ for a noisy adder multiple access channel. A signature code in this model has the property that any subset of codewords can be uniquely reconstructed based on any vector that is obtained from the sum (over integers) of these codewords. We show that there exists an algorithm to construct a signature code of length $k = \frac{2n\log{3}}{(1-2\tau)\left(\log{n} + (q-1)\log{\frac{\pi}{2}}\right)} +\mathcal{O}\left(\frac{n}{\log{n}(q+\log{n})}\right)$ capable of correcting $\tau k$ errors at the channel output, where $0\le \tau < \frac{q-1}{2q}$. Furthermore, we present an explicit construction of signature codewords with polynomial complexity being able to correct up to $\left( \frac{q-1}{8q} - \epsilon\right)k$ errors for a codeword length $k = \mathcal{O} \left ( \frac{n}{\log \log n} \right )$, where $\epsilon$ is a small non-negative number. Moreover, we prove several non-existence results (converse bounds) for $q$-ary signature codes enabling error correction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.