Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Signature Codes for a Noisy Adder Multiple Access Channel (2206.10735v2)

Published 21 Jun 2022 in cs.IT and math.IT

Abstract: In this work, we consider $q$-ary signature codes of length $k$ and size $n$ for a noisy adder multiple access channel. A signature code in this model has the property that any subset of codewords can be uniquely reconstructed based on any vector that is obtained from the sum (over integers) of these codewords. We show that there exists an algorithm to construct a signature code of length $k = \frac{2n\log{3}}{(1-2\tau)\left(\log{n} + (q-1)\log{\frac{\pi}{2}}\right)} +\mathcal{O}\left(\frac{n}{\log{n}(q+\log{n})}\right)$ capable of correcting $\tau k$ errors at the channel output, where $0\le \tau < \frac{q-1}{2q}$. Furthermore, we present an explicit construction of signature codewords with polynomial complexity being able to correct up to $\left( \frac{q-1}{8q} - \epsilon\right)k$ errors for a codeword length $k = \mathcal{O} \left ( \frac{n}{\log \log n} \right )$, where $\epsilon$ is a small non-negative number. Moreover, we prove several non-existence results (converse bounds) for $q$-ary signature codes enabling error correction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube