Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Panoramic Panoptic Segmentation: Insights Into Surrounding Parsing for Mobile Agents via Unsupervised Contrastive Learning (2206.10711v2)

Published 21 Jun 2022 in cs.CV, cs.RO, and eess.IV

Abstract: In this work, we introduce panoramic panoptic segmentation, as the most holistic scene understanding, both in terms of Field of View (FoV) and image-level understanding for standard camera-based input. A complete surrounding understanding provides a maximum of information to a mobile agent. This is essential information for any intelligent vehicle to make informed decisions in a safety-critical dynamic environment such as real-world traffic. In order to overcome the lack of annotated panoramic images, we propose a framework which allows model training on standard pinhole images and transfers the learned features to the panoramic domain in a cost-minimizing way. The domain shift from pinhole to panoramic images is non-trivial as large objects and surfaces are heavily distorted close to the image border regions and look different across the two domains. Using our proposed method with dense contrastive learning, we manage to achieve significant improvements over a non-adapted approach. Depending on the efficient panoptic segmentation architecture, we can improve 3.5-6.5% measured in Panoptic Quality (PQ) over non-adapted models on our established Wild Panoramic Panoptic Segmentation (WildPPS) dataset. Furthermore, our efficient framework does not need access to the images of the target domain, making it a feasible domain generalization approach suitable for a limited hardware setting. As additional contributions, we publish WildPPS: The first panoramic panoptic image dataset to foster progress in surrounding perception and explore a novel training procedure combining supervised and contrastive training.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.