Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A deep inverse reinforcement learning approach to route choice modeling with context-dependent rewards (2206.10598v2)

Published 18 Jun 2022 in cs.LG and cs.AI

Abstract: Route choice modeling is a fundamental task in transportation planning and demand forecasting. Classical methods generally adopt the discrete choice model (DCM) framework with linear utility functions and high-level route characteristics. While several recent studies have started to explore the applicability of deep learning for route choice modeling, they are limited to path-based models with relatively simple model architectures and relying on predefined choice sets. Existing link-based models can capture the dynamic nature of link choices within the trip without the need for choice set generation, but still assume linear relationships and link-additive features. To address these issues, this study proposes a general deep inverse reinforcement learning (IRL) framework for link-based route choice modeling, which is capable of incorporating diverse features (of the state, action and trip context) and capturing complex relationships. Specifically, we adapt an adversarial IRL model to the route choice problem for efficient estimation of context-dependent reward functions without value iteration. Experiment results based on taxi GPS data from Shanghai, China validate the superior prediction performance of the proposed model over conventional DCMs and other imitation learning baselines, even for destinations unseen in the training data. Further analysis show that the model exhibits competitive computational efficiency and reasonable interpretability. The proposed methodology provides a new direction for future development of route choice models. It is general and can be adaptable to other route choice problems across different modes and networks.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube