Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of Semantics and Depth (2206.10562v2)

Published 21 Jun 2022 in cs.CV

Abstract: Multi-task learning (MTL) paradigm focuses on jointly learning two or more tasks, aiming for significant improvement w.r.t model's generalizability, performance, and training/inference memory footprint. The aforementioned benefits become ever so indispensable in the case of joint training for vision-related {\bf dense} prediction tasks. In this work, we tackle the MTL problem of two dense tasks, i.e., semantic segmentation and depth estimation, and present a novel attention module called Cross-Channel Attention Module ({CCAM}), which facilitates effective feature sharing along each channel between the two tasks, leading to mutual performance gain with a negligible increase in trainable parameters. In a true symbiotic spirit, we then formulate a novel data augmentation for the semantic segmentation task using predicted depth called {AffineMix}, and a simple depth augmentation using predicted semantics called {ColorAug}. Finally, we validate the performance gain of the proposed method on the Cityscapes and ScanNet dataset, which helps us achieve state-of-the-art results for a semi-supervised joint model based on depth and semantic segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nitin Bansal (5 papers)
  2. Pan Ji (53 papers)
  3. Junsong Yuan (93 papers)
  4. Yi Xu (304 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.