Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

KTN: Knowledge Transfer Network for Learning Multi-person 2D-3D Correspondences (2206.10090v1)

Published 21 Jun 2022 in cs.CV

Abstract: Human densepose estimation, aiming at establishing dense correspondences between 2D pixels of human body and 3D human body template, is a key technique in enabling machines to have an understanding of people in images. It still poses several challenges due to practical scenarios where real-world scenes are complex and only partial annotations are available, leading to incompelete or false estimations. In this work, we present a novel framework to detect the densepose of multiple people in an image. The proposed method, which we refer to Knowledge Transfer Network (KTN), tackles two main problems: 1) how to refine image representation for alleviating incomplete estimations, and 2) how to reduce false estimation caused by the low-quality training labels (i.e., limited annotations and class-imbalance labels). Unlike existing works directly propagating the pyramidal features of regions for densepose estimation, the KTN uses a refinement of pyramidal representation, where it simultaneously maintains feature resolution and suppresses background pixels, and this strategy results in a substantial increase in accuracy. Moreover, the KTN enhances the ability of 3D based body parsing with external knowledges, where it casts 2D based body parsers trained from sufficient annotations as a 3D based body parser through a structural body knowledge graph. In this way, it significantly reduces the adverse effects caused by the low-quality annotations. The effectiveness of KTN is demonstrated by its superior performance to the state-of-the-art methods on DensePose-COCO dataset. Extensive ablation studies and experimental results on representative tasks (e.g., human body segmentation, human part segmentation and keypoints detection) and two popular densepose estimation pipelines (i.e., RCNN and fully-convolutional frameworks), further indicate the generalizability of the proposed method.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.