Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A globally convergent method to accelerate large-scale optimization using on-the-fly model hyperreduction: application to shape optimization (2206.09942v1)

Published 20 Jun 2022 in math.OC, cs.NA, and math.NA

Abstract: We present a numerical method to efficiently solve optimization problems governed by large-scale nonlinear systems of equations, including discretized partial differential equations, using projection-based reduced-order models accelerated with hyperreduction (empirical quadrature) and embedded in a trust-region framework that guarantees global convergence. The proposed framework constructs a hyperreduced model on-the-fly during the solution of the optimization problem, which completely avoids an offline training phase. This ensures all snapshot information is collected along the optimization trajectory, which avoids wasting samples in remote regions of the parameters space that are never visited, and inherently avoids the curse of dimensionality of sampling in a high-dimensional parameter space. At each iteration of the proposed algorithm, a reduced basis and empirical quadrature weights are constructed precisely to ensure the global convergence criteria of the trust-region method are satisfied, ensuring global convergence to a local minimum of the original (unreduced) problem. Numerical experiments are performed on two fluid shape optimization problems to verify the global convergence of the method and demonstrate its computational efficiency; speedups over 18x (accounting for all computational cost, even cost that is traditionally considered "offline" such as snapshot collection and data compression) relative to standard optimization approaches that do not leverage model reduction are shown.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.