Papers
Topics
Authors
Recent
2000 character limit reached

Finding $k$-Secluded Trees Faster (2206.09884v2)

Published 20 Jun 2022 in cs.DS and cs.CC

Abstract: We revisit the \textsc{$k$-Secluded Tree} problem. Given a vertex-weighted undirected graph $G$, its objective is to find a maximum-weight induced subtree $T$ whose open neighborhood has size at most $k$. We present a fixed-parameter tractable algorithm that solves the problem in time $2{\mathcal{O}(k \log k)}\cdot n{\mathcal{O}(1)}$, improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a $k$-secluded tree by branching on vertices in the open neighborhood of the current tree $T$. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any $k$-secluded supertree $T' \supseteq T$ once the open neighborhood of $T$ becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight $k$-secluded trees, which allows us to count the number of maximum-weight $k$-secluded trees containing a specified vertex in the same running time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.