Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Symbolic Approach for Counterfactual Explanations (2206.09638v1)

Published 20 Jun 2022 in cs.AI

Abstract: In this paper titled A Symbolic Approach for Counterfactual Explanations we propose a novel symbolic approach to provide counterfactual explanations for a classifier predictions. Contrary to most explanation approaches where the goal is to understand which and to what extent parts of the data helped to give a prediction, counterfactual explanations indicate which features must be changed in the data in order to change this classifier prediction. Our approach is symbolic in the sense that it is based on encoding the decision function of a classifier in an equivalent CNF formula. In this approach, counterfactual explanations are seen as the Minimal Correction Subsets (MCS), a well-known concept in knowledge base reparation. Hence, this approach takes advantage of the strengths of already existing and proven solutions for the generation of MCS. Our preliminary experimental studies on Bayesian classifiers show the potential of this approach on several datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.