Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Variational Distillation for Multi-View Learning (2206.09548v1)

Published 20 Jun 2022 in cs.CV

Abstract: Information Bottleneck (IB) based multi-view learning provides an information theoretic principle for seeking shared information contained in heterogeneous data descriptions. However, its great success is generally attributed to estimate the multivariate mutual information which is intractable when the network becomes complicated. Moreover, the representation learning tradeoff, {\it i.e.}, prediction-compression and sufficiency-consistency tradeoff, makes the IB hard to satisfy both requirements simultaneously. In this paper, we design several variational information bottlenecks to exploit two key characteristics ({\it i.e.}, sufficiency and consistency) for multi-view representation learning. Specifically, we propose a Multi-View Variational Distillation (MV$2$D) strategy to provide a scalable, flexible and analytical solution to fitting MI by giving arbitrary input of viewpoints but without explicitly estimating it. Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels, producing predictive and compact representations naturally. Also, our information-theoretic constraint can effectively neutralize the sensitivity to heterogeneous data by eliminating both task-irrelevant and view-specific information, preventing both tradeoffs in multiple view cases. To verify our theoretically grounded strategies, we apply our approaches to various benchmarks under three different applications. Extensive experiments to quantitatively and qualitatively demonstrate the effectiveness of our approach against state-of-the-art methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.