Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations (2206.09527v2)

Published 20 Jun 2022 in math.NA, cs.NA, math.ST, stat.ML, and stat.TH

Abstract: This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any H\"{o}lder smooth function up to a given approximation error in H\"{o}lder norms in such a way that all weights of this neural network are bounded by $1$. The latter feature is essential to control generalization errors in many statistical and machine learning applications.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.