Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Parallel Implementation of Computing Mean Average Precision (2206.09504v1)

Published 19 Jun 2022 in cs.CV and cs.AI

Abstract: Mean Average Precision (mAP) has been widely used for evaluating the quality of object detectors, but an efficient implementation is still absent. Current implementations can only count true positives (TP's) and false positives (FP's) for one class at a time by looping through every detection of that class sequentially. Not only are these approaches inefficient, but they are also inconvenient for reporting validation mAP during training. We propose a parallelized alternative that can process mini-batches of detected bounding boxes (DTBB's) and ground truth bounding boxes (GTBB's) as inference goes such that mAP can be instantly calculated after inference is finished. Loops and control statements in sequential implementations are replaced with extensive uses of broadcasting, masking, and indexing. All operators involved are supported by popular machine learning frameworks such as PyTorch and TensorFlow. As a result, our implementation is much faster and can easily fit into typical training routines. A PyTorch version of our implementation is available at https://github.com/bwangca/fast-map.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube