Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learning Multi-Task Transferable Rewards via Variational Inverse Reinforcement Learning (2206.09498v1)

Published 19 Jun 2022 in cs.LG, cs.AI, and cs.RO

Abstract: Many robotic tasks are composed of a lot of temporally correlated sub-tasks in a highly complex environment. It is important to discover situational intentions and proper actions by deliberating on temporal abstractions to solve problems effectively. To understand the intention separated from changing task dynamics, we extend an empowerment-based regularization technique to situations with multiple tasks based on the framework of a generative adversarial network. Under the multitask environments with unknown dynamics, we focus on learning a reward and policy from the unlabeled expert examples. In this study, we define situational empowerment as the maximum of mutual information representing how an action conditioned on both a certain state and sub-task affects the future. Our proposed method derives the variational lower bound of the situational mutual information to optimize it. We simultaneously learn the transferable multi-task reward function and policy by adding an induced term to the objective function. By doing so, the multi-task reward function helps to learn a robust policy for environmental change. We validate the advantages of our approach on multi-task learning and multi-task transfer learning. We demonstrate our proposed method has the robustness of both randomness and changing task dynamics. Finally, we prove that our method has significantly better performance and data efficiency than existing imitation learning methods on various benchmarks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.