Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Double-Graph Based Framework for Frame Semantic Parsing (2206.09158v1)

Published 18 Jun 2022 in cs.CL

Abstract: Frame semantic parsing is a fundamental NLP task, which consists of three subtasks: frame identification, argument identification and role classification. Most previous studies tend to neglect relations between different subtasks and arguments and pay little attention to ontological frame knowledge defined in FrameNet. In this paper, we propose a Knowledge-guided Incremental semantic parser with Double-graph (KID). We first introduce Frame Knowledge Graph (FKG), a heterogeneous graph containing both frames and FEs (Frame Elements) built on the frame knowledge so that we can derive knowledge-enhanced representations for frames and FEs. Besides, we propose Frame Semantic Graph (FSG) to represent frame semantic structures extracted from the text with graph structures. In this way, we can transform frame semantic parsing into an incremental graph construction problem to strengthen interactions between subtasks and relations between arguments. Our experiments show that KID outperforms the previous state-of-the-art method by up to 1.7 F1-score on two FrameNet datasets. Our code is availavle at https://github.com/PKUnlp-icler/KID.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.