Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bag of Image Patch Embedding Behind the Success of Self-Supervised Learning (2206.08954v2)

Published 17 Jun 2022 in cs.CV and cs.LG

Abstract: Self-supervised learning (SSL) has recently achieved tremendous empirical advancements in learning image representation. However, our understanding of the principle behind learning such a representation is still limited. This work shows that joint-embedding SSL approaches primarily learn a representation of image patches, which reflects their co-occurrence. Such a connection to co-occurrence modeling can be established formally, and it supplements the prevailing invariance perspective. We empirically show that learning a representation for fixed-scale patches and aggregating local patch representations as the image representation achieves similar or even better results than the baseline methods. We denote this process as BagSSL. Even with 32x32 patch representation, BagSSL achieves 62% top-1 linear probing accuracy on ImageNet. On the other hand, with a multi-scale pretrained model, we show that the whole image embedding is approximately the average of local patch embeddings. While the SSL representation is relatively invariant at the global scale, we show that locality is preserved when we zoom into local patch-level representation. Further, we show that patch representation aggregation can improve various SOTA baseline methods by a large margin. The patch representation is considerably easier to understand, and this work makes a step to demystify self-supervised representation learning.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.