DenseMTL: Cross-task Attention Mechanism for Dense Multi-task Learning (2206.08927v2)
Abstract: Multi-task learning has recently emerged as a promising solution for a comprehensive understanding of complex scenes. In addition to being memory-efficient, multi-task models, when appropriately designed, can facilitate the exchange of complementary signals across tasks. In this work, we jointly address 2D semantic segmentation and three geometry-related tasks: dense depth estimation, surface normal estimation, and edge estimation, demonstrating their benefits on both indoor and outdoor datasets. We propose a novel multi-task learning architecture that leverages pairwise cross-task exchange through correlation-guided attention and self-attention to enhance the overall representation learning for all tasks. We conduct extensive experiments across three multi-task setups, showing the advantages of our approach compared to competitive baselines in both synthetic and real-world benchmarks. Additionally, we extend our method to the novel multi-task unsupervised domain adaptation setting. Our code is available at https://github.com/cv-rits/DenseMTL
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.