Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning a Single Neuron with Adversarial Label Noise via Gradient Descent (2206.08918v1)

Published 17 Jun 2022 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the fundamental problem of learning a single neuron, i.e., a function of the form $\mathbf{x}\mapsto\sigma(\mathbf{w}\cdot\mathbf{x})$ for monotone activations $\sigma:\mathbb{R}\mapsto\mathbb{R}$, with respect to the $L_22$-loss in the presence of adversarial label noise. Specifically, we are given labeled examples from a distribution $D$ on $(\mathbf{x}, y)\in\mathbb{R}d \times \mathbb{R}$ such that there exists $\mathbf{w}\ast\in\mathbb{R}d$ achieving $F(\mathbf{w}\ast)=\epsilon$, where $F(\mathbf{w})=\mathbf{E}_{(\mathbf{x},y)\sim D}[(\sigma(\mathbf{w}\cdot \mathbf{x})-y)2]$. The goal of the learner is to output a hypothesis vector $\mathbf{w}$ such that $F(\mathbb{w})=C\, \epsilon$ with high probability, where $C>1$ is a universal constant. As our main contribution, we give efficient constant-factor approximate learners for a broad class of distributions (including log-concave distributions) and activation functions. Concretely, for the class of isotropic log-concave distributions, we obtain the following important corollaries: For the logistic activation, we obtain the first polynomial-time constant factor approximation (even under the Gaussian distribution). Our algorithm has sample complexity $\widetilde{O}(d/\epsilon)$, which is tight within polylogarithmic factors. For the ReLU activation, we give an efficient algorithm with sample complexity $\tilde{O}(d\, \polylog(1/\epsilon))$. Prior to our work, the best known constant-factor approximate learner had sample complexity $\tilde{\Omega}(d/\epsilon)$. In both of these settings, our algorithms are simple, performing gradient-descent on the (regularized) $L_22$-loss. The correctness of our algorithms relies on novel structural results that we establish, showing that (essentially all) stationary points of the underlying non-convex loss are approximately optimal.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.