Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and EM (2206.08873v2)

Published 17 Jun 2022 in math.OC, cs.LG, and stat.ML

Abstract: Many problems in machine learning can be formulated as optimizing a convex functional over a vector space of measures. This paper studies the convergence of the mirror descent algorithm in this infinite-dimensional setting. Defining Bregman divergences through directional derivatives, we derive the convergence of the scheme for relatively smooth and convex pairs of functionals. Such assumptions allow to handle non-smooth functionals such as the Kullback--Leibler (KL) divergence. Applying our result to joint distributions and KL, we show that Sinkhorn's primal iterations for entropic optimal transport in the continuous setting correspond to a mirror descent, and we obtain a new proof of its (sub)linear convergence. We also show that Expectation Maximization (EM) can always formally be written as a mirror descent. When optimizing only on the latent distribution while fixing the mixtures parameters -- which corresponds to the Richardson--Lucy deconvolution scheme in signal processing -- we derive sublinear rates of convergence.

Citations (24)

Summary

We haven't generated a summary for this paper yet.