Papers
Topics
Authors
Recent
2000 character limit reached

Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and EM (2206.08873v2)

Published 17 Jun 2022 in math.OC, cs.LG, and stat.ML

Abstract: Many problems in machine learning can be formulated as optimizing a convex functional over a vector space of measures. This paper studies the convergence of the mirror descent algorithm in this infinite-dimensional setting. Defining Bregman divergences through directional derivatives, we derive the convergence of the scheme for relatively smooth and convex pairs of functionals. Such assumptions allow to handle non-smooth functionals such as the Kullback--Leibler (KL) divergence. Applying our result to joint distributions and KL, we show that Sinkhorn's primal iterations for entropic optimal transport in the continuous setting correspond to a mirror descent, and we obtain a new proof of its (sub)linear convergence. We also show that Expectation Maximization (EM) can always formally be written as a mirror descent. When optimizing only on the latent distribution while fixing the mixtures parameters -- which corresponds to the Richardson--Lucy deconvolution scheme in signal processing -- we derive sublinear rates of convergence.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.