Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

How Robust is Unsupervised Representation Learning to Distribution Shift? (2206.08871v2)

Published 17 Jun 2022 in cs.LG and stat.ML

Abstract: The robustness of machine learning algorithms to distributions shift is primarily discussed in the context of supervised learning (SL). As such, there is a lack of insight on the robustness of the representations learned from unsupervised methods, such as self-supervised learning (SSL) and auto-encoder based algorithms (AE), to distribution shift. We posit that the input-driven objectives of unsupervised algorithms lead to representations that are more robust to distribution shift than the target-driven objective of SL. We verify this by extensively evaluating the performance of SSL and AE on both synthetic and realistic distribution shift datasets. Following observations that the linear layer used for classification itself can be susceptible to spurious correlations, we evaluate the representations using a linear head trained on a small amount of out-of-distribution (OOD) data, to isolate the robustness of the learned representations from that of the linear head. We also develop "controllable" versions of existing realistic domain generalisation datasets with adjustable degrees of distribution shifts. This allows us to study the robustness of different learning algorithms under versatile yet realistic distribution shift conditions. Our experiments show that representations learned from unsupervised learning algorithms generalise better than SL under a wide variety of extreme as well as realistic distribution shifts.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube