Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes (2206.08852v2)

Published 17 Jun 2022 in cs.LG

Abstract: Quantization is widely employed in both cloud and edge systems to reduce the memory occupation, latency, and energy consumption of deep neural networks. In particular, mixed-precision quantization, i.e., the use of different bit-widths for different portions of the network, has been shown to provide excellent efficiency gains with limited accuracy drops, especially with optimized bit-width assignments determined by automated Neural Architecture Search (NAS) tools. State-of-the-art mixed-precision works layer-wise, i.e., it uses different bit-widths for the weights and activations tensors of each network layer. In this work, we widen the search space, proposing a novel NAS that selects the bit-width of each weight tensor channel independently. This gives the tool the additional flexibility of assigning a higher precision only to the weights associated with the most informative features. Testing on the MLPerf Tiny benchmark suite, we obtain a rich collection of Pareto-optimal models in the accuracy vs model size and accuracy vs energy spaces. When deployed on the MPIC RISC-V edge processor, our networks reduce the memory and energy for inference by up to 63% and 27% respectively compared to a layer-wise approach, for the same accuracy.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.