Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PICO: Pipeline Inference Framework for Versatile CNNs on Diverse Mobile Devices (2206.08662v3)

Published 17 Jun 2022 in cs.DC

Abstract: Distributing the inference of convolutional neural network (CNN) to multiple mobile devices has been studied in recent years to achieve real-time inference without losing accuracy. However, how to map CNN to devices remains a challenge. On the one hand, scheduling the workload of state-of-the-art CNNs with multiple devices is NP-Hard because the structures of CNNs are directed acyclic graphs (DAG) rather than simple chains. On the other hand, distributing the inference workload suffers from expensive communication and unbalanced computation due to the wireless environment and heterogeneous devices. This paper presents PICO, a pipeline cooperation framework to accelerate the inference of versatile CNNs on diverse mobile devices. At its core, PICO features: (1) a generic graph partition algorithm that considers the characteristics of any given CNN and orchestrates it into a list of model pieces with suitable granularity, and (2) a many-to-many mapping algorithm that produces the best pipeline configuration for heterogeneous devices. In our experiment with 2 ~ 8 Raspberry-Pi devices, the throughput can be improved by 1.8 ~ 6.8x under different CPU frequencies.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube