Local Slot Attention for Vision-and-Language Navigation (2206.08645v2)
Abstract: Vision-and-language navigation (VLN), a frontier study aiming to pave the way for general-purpose robots, has been a hot topic in the computer vision and natural language processing community. The VLN task requires an agent to navigate to a goal location following natural language instructions in unfamiliar environments. Recently, transformer-based models have gained significant improvements on the VLN task. Since the attention mechanism in the transformer architecture can better integrate inter- and intra-modal information of vision and language. However, there exist two problems in current transformer-based models. 1) The models process each view independently without taking the integrity of the objects into account. 2) During the self-attention operation in the visual modality, the views that are spatially distant can be inter-weaved with each other without explicit restriction. This kind of mixing may introduce extra noise instead of useful information. To address these issues, we propose 1) A slot-attention based module to incorporate information from segmentation of the same object. 2) A local attention mask mechanism to limit the visual attention span. The proposed modules can be easily plugged into any VLN architecture and we use the Recurrent VLN-Bert as our base model. Experiments on the R2R dataset show that our model has achieved the state-of-the-art results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.