Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhanced Bi-directional Motion Estimation for Video Frame Interpolation (2206.08572v3)

Published 17 Jun 2022 in cs.CV

Abstract: We present a novel simple yet effective algorithm for motion-based video frame interpolation. Existing motion-based interpolation methods typically rely on a pre-trained optical flow model or a U-Net based pyramid network for motion estimation, which either suffer from large model size or limited capacity in handling complex and large motion cases. In this work, by carefully integrating intermediateoriented forward-warping, lightweight feature encoder, and correlation volume into a pyramid recurrent framework, we derive a compact model to simultaneously estimate the bidirectional motion between input frames. It is 15 times smaller in size than PWC-Net, yet enables more reliable and flexible handling of challenging motion cases. Based on estimated bi-directional motion, we forward-warp input frames and their context features to intermediate frame, and employ a synthesis network to estimate the intermediate frame from warped representations. Our method achieves excellent performance on a broad range of video frame interpolation benchmarks. Code and trained models are available at \url{https://github.com/srcn-ivl/EBME}.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.