Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-Classification of Brain Tumor Images Using Transfer Learning Based Deep Neural Network (2206.08543v1)

Published 17 Jun 2022 in eess.IV and cs.CV

Abstract: In recent advancement towards computer based diagnostics system, the classification of brain tumor images is a challenging task. This paper mainly focuses on elevating the classification accuracy of brain tumor images with transfer learning based deep neural network. The classification approach is started with the image augmentation operation including rotation, zoom, hori-zontal flip, width shift, height shift, and shear to increase the diversity in image datasets. Then the general features of the input brain tumor images are extracted based on a pre-trained transfer learning method comprised of Inception-v3. Fi-nally, the deep neural network with 4 customized layers is employed for classi-fying the brain tumors in most frequent brain tumor types as meningioma, glioma, and pituitary. The proposed model acquires an effective performance with an overall accuracy of 96.25% which is much improved than some existing multi-classification methods. Whereas, the fine-tuning of hyper-parameters and inclusion of customized DNN with the Inception-v3 model results in an im-provement of the classification accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.