Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Empirical Bayesian Approaches for Robust Constraint-based Causal Discovery under Insufficient Data (2206.08448v1)

Published 16 Jun 2022 in cs.LG and stat.ME

Abstract: Causal discovery is to learn cause-effect relationships among variables given observational data and is important for many applications. Existing causal discovery methods assume data sufficiency, which may not be the case in many real world datasets. As a result, many existing causal discovery methods can fail under limited data. In this work, we propose Bayesian-augmented frequentist independence tests to improve the performance of constraint-based causal discovery methods under insufficient data: 1) We firstly introduce a Bayesian method to estimate mutual information (MI), based on which we propose a robust MI based independence test; 2) Secondly, we consider the Bayesian estimation of hypothesis likelihood and incorporate it into a well-defined statistical test, resulting in a robust statistical testing based independence test. We apply proposed independence tests to constraint-based causal discovery methods and evaluate the performance on benchmark datasets with insufficient samples. Experiments show significant performance improvement in terms of both accuracy and efficiency over SOTA methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube