Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enriching Abusive Language Detection with Community Context (2206.08445v1)

Published 16 Jun 2022 in cs.CL

Abstract: Uses of pejorative expressions can be benign or actively empowering. When models for abuse detection misclassify these expressions as derogatory, they inadvertently censor productive conversations held by marginalized groups. One way to engage with non-dominant perspectives is to add context around conversations. Previous research has leveraged user- and thread-level features, but it often neglects the spaces within which productive conversations take place. Our paper highlights how community context can improve classification outcomes in abusive language detection. We make two main contributions to this end. First, we demonstrate that online communities cluster by the nature of their support towards victims of abuse. Second, we establish how community context improves accuracy and reduces the false positive rates of state-of-the-art abusive language classifiers. These findings suggest a promising direction for context-aware models in abusive language research.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.