GraphScale: Scalable Bandwidth-Efficient Graph Processing on FPGAs (2206.08432v1)
Abstract: Recent advances in graph processing on FPGAs promise to alleviate performance bottlenecks with irregular memory access patterns. Such bottlenecks challenge performance for a growing number of important application areas like machine learning and data analytics. While FPGAs denote a promising solution through flexible memory hierarchies and massive parallelism, we argue that current graph processing accelerators either use the off-chip memory bandwidth inefficiently or do not scale well across memory channels. In this work, we propose GraphScale, a scalable graph processing framework for FPGAs. For the first time, GraphScale combines multi-channel memory with asynchronous graph processing (i.e., for fast convergence on results) and a compressed graph representation (i.e., for efficient usage of memory bandwidth and reduced memory footprint). GraphScale solves common graph problems like breadth-first search, PageRank, and weakly-connected components through modular user-defined functions, a novel two-dimensional partitioning scheme, and a high-performance two-level crossbar design.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.