Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MixGen: A New Multi-Modal Data Augmentation (2206.08358v3)

Published 16 Jun 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Data augmentation is a necessity to enhance data efficiency in deep learning. For vision-language pre-training, data is only augmented either for images or for text in previous works. In this paper, we present MixGen: a joint data augmentation for vision-language representation learning to further improve data efficiency. It generates new image-text pairs with semantic relationships preserved by interpolating images and concatenating text. It's simple, and can be plug-and-played into existing pipelines. We evaluate MixGen on four architectures, including CLIP, ViLT, ALBEF and TCL, across five downstream vision-language tasks to show its versatility and effectiveness. For example, adding MixGen in ALBEF pre-training leads to absolute performance improvements on downstream tasks: image-text retrieval (+6.2% on COCO fine-tuned and +5.3% on Flicker30K zero-shot), visual grounding (+0.9% on RefCOCO+), visual reasoning (+$0.9% on NLVR2), visual question answering (+0.3% on VQA2.0), and visual entailment (+0.4% on SNLI-VE).

Citations (70)

Summary

We haven't generated a summary for this paper yet.