Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-Based Adversarial and Out-of-Distribution Detection (2206.08255v2)

Published 16 Jun 2022 in cs.LG and cs.CV

Abstract: We propose to utilize gradients for detecting adversarial and out-of-distribution samples. We introduce confounding labels -- labels that differ from normal labels seen during training -- in gradient generation to probe the effective expressivity of neural networks. Gradients depict the amount of change required for a model to properly represent given inputs, providing insight into the representational power of the model established by network architectural properties as well as training data. By introducing a label of different design, we remove the dependency on ground truth labels for gradient generation during inference. We show that our gradient-based approach allows for capturing the anomaly in inputs based on the effective expressivity of the models with no hyperparameter tuning or additional processing, and outperforms state-of-the-art methods for adversarial and out-of-distribution detection.

Citations (11)

Summary

We haven't generated a summary for this paper yet.