Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Catastrophic overfitting can be induced with discriminative non-robust features (2206.08242v2)

Published 16 Jun 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Adversarial training (AT) is the de facto method for building robust neural networks, but it can be computationally expensive. To mitigate this, fast single-step attacks can be used, but this may lead to catastrophic overfitting (CO). This phenomenon appears when networks gain non-trivial robustness during the first stages of AT, but then reach a breaking point where they become vulnerable in just a few iterations. The mechanisms that lead to this failure mode are still poorly understood. In this work, we study the onset of CO in single-step AT methods through controlled modifications of typical datasets of natural images. In particular, we show that CO can be induced at much smaller $\epsilon$ values than it was observed before just by injecting images with seemingly innocuous features. These features aid non-robust classification but are not enough to achieve robustness on their own. Through extensive experiments we analyze this novel phenomenon and discover that the presence of these easy features induces a learning shortcut that leads to CO. Our findings provide new insights into the mechanisms of CO and improve our understanding of the dynamics of AT. The code to reproduce our experiments can be found at https://github.com/gortizji/co_features.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.