Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the well-spread property and its relation to linear regression (2206.08092v1)

Published 16 Jun 2022 in cs.LG and stat.ML

Abstract: We consider the robust linear regression model $\boldsymbol{y} = X\beta* + \boldsymbol{\eta}$, where an adversary oblivious to the design $X \in \mathbb{R}{n \times d}$ may choose $\boldsymbol{\eta}$ to corrupt all but a (possibly vanishing) fraction of the observations $\boldsymbol{y}$ in an arbitrary way. Recent work [dLN+21, dNS21] has introduced efficient algorithms for consistent recovery of the parameter vector. These algorithms crucially rely on the design matrix being well-spread (a matrix is well-spread if its column span is far from any sparse vector). In this paper, we show that there exists a family of design matrices lacking well-spreadness such that consistent recovery of the parameter vector in the above robust linear regression model is information-theoretically impossible. We further investigate the average-case time complexity of certifying well-spreadness of random matrices. We show that it is possible to efficiently certify whether a given $n$-by-$d$ Gaussian matrix is well-spread if the number of observations is quadratic in the ambient dimension. We complement this result by showing rigorous evidence -- in the form of a lower bound against low-degree polynomials -- of the computational hardness of this same certification problem when the number of observations is $o(d2)$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.