Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-View Imputation and Cross-Attention Network Based on Incomplete Longitudinal and Multimodal Data for Conversion Prediction of Mild Cognitive Impairment (2206.08019v2)

Published 16 Jun 2022 in eess.IV and cs.CV

Abstract: Predicting whether subjects with mild cognitive impairment (MCI) will convert to Alzheimer's disease is a significant clinical challenge. Longitudinal variations and complementary information inherent in longitudinal and multimodal data are crucial for MCI conversion prediction, but persistent issue of missing data in these data may hinder their effective application. Additionally, conversion prediction should be achieved in the early stages of disease progression in clinical practice, specifically at baseline visit (BL). Therefore, longitudinal data should only be incorporated during training to capture disease progression information. To address these challenges, a multi-view imputation and cross-attention network (MCNet) was proposed to integrate data imputation and MCI conversion prediction in a unified framework. First, a multi-view imputation method combined with adversarial learning was presented to handle various missing data scenarios and reduce imputation errors. Second, two cross-attention blocks were introduced to exploit the potential associations in longitudinal and multimodal data. Finally, a multi-task learning model was established for data imputation, longitudinal classification, and conversion prediction tasks. When the model was appropriately trained, the disease progression information learned from longitudinal data can be leveraged by BL data to improve MCI conversion prediction at BL. MCNet was tested on two independent testing sets and single-modal BL data to verify its effectiveness and flexibility in MCI conversion prediction. Results showed that MCNet outperformed several competitive methods. Moreover, the interpretability of MCNet was demonstrated. Thus, our MCNet may be a valuable tool in longitudinal and multimodal data analysis for MCI conversion prediction. Codes are available at https://github.com/Meiyan88/MCNET.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com