Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness prediction of age-hardening aluminum alloy based on ensemble learning (2206.08011v1)

Published 16 Jun 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: With the rapid development of artificial intelligence, the combination of material database and machine learning has driven the progress of material informatics. Because aluminum alloy is widely used in many fields, so it is significant to predict the properties of aluminum alloy. In this thesis, the data of Al-Cu-Mg-X (X: Zn, Zr, etc.) alloy are used to input the composition, aging conditions (time and temperature) and predict its hardness. An ensemble learning solution based on automatic machine learning and an attention mechanism introduced into the secondary learner of deep neural network are proposed respectively. The experimental results show that selecting the correct secondary learner can further improve the prediction accuracy of the model. This manuscript introduces the attention mechanism to improve the secondary learner based on deep neural network, and obtains a fusion model with better performance. The R-Square of the best model is 0.9697 and the MAE is 3.4518HV.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Houchen Zuo (3 papers)
  2. Yongquan Jiang (5 papers)
  3. Yan Yang (119 papers)
  4. Baoying Liu (3 papers)
  5. Jie Hu (187 papers)

Summary

We haven't generated a summary for this paper yet.