Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback (2206.07908v2)

Published 16 Jun 2022 in cs.LG

Abstract: The problem of online learning with graph feedback has been extensively studied in the literature due to its generality and potential to model various learning tasks. Existing works mainly study the adversarial and stochastic feedback separately. If the prior knowledge of the feedback mechanism is unavailable or wrong, such specially designed algorithms could suffer great loss. To avoid this problem, \citet{erez2021towards} try to optimize for both environments. However, they assume the feedback graphs are undirected and each vertex has a self-loop, which compromises the generality of the framework and may not be satisfied in applications. With a general feedback graph, the observation of an arm may not be available when this arm is pulled, which makes the exploration more expensive and the algorithms more challenging to perform optimally in both environments. In this work, we overcome this difficulty by a new trade-off mechanism with a carefully-designed proportion for exploration and exploitation. We prove the proposed algorithm simultaneously achieves $\mathrm{poly} \log T$ regret in the stochastic setting and minimax-optimal regret of $\tilde{O}(T{2/3})$ in the adversarial setting where $T$ is the horizon and $\tilde{O}$ hides parameters independent of $T$ as well as logarithmic terms. To our knowledge, this is the first best-of-both-worlds result for general feedback graphs.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.