Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Domain Generalization via Selective Consistency Regularization for Time Series Classification (2206.07876v1)

Published 16 Jun 2022 in cs.LG

Abstract: Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains and without access to target domain samples during training. Popular domain alignment methods for domain generalization seek to extract domain-invariant features by minimizing the discrepancy between feature distributions across all domains, disregarding inter-domain relationships. In this paper, we instead propose a novel representation learning methodology that selectively enforces prediction consistency between source domains estimated to be closely-related. Specifically, we hypothesize that domains share different class-informative representations, so instead of aligning all domains which can cause negative transfer, we only regularize the discrepancy between closely-related domains. We apply our method to time-series classification tasks and conduct comprehensive experiments on three public real-world datasets. Our method significantly improves over the baseline and achieves better or competitive performance in comparison with state-of-the-art methods in terms of both accuracy and model calibration.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube