Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

How to talk so AI will learn: Instructions, descriptions, and autonomy (2206.07870v3)

Published 16 Jun 2022 in cs.AI

Abstract: From the earliest years of our lives, humans use language to express our beliefs and desires. Being able to talk to artificial agents about our preferences would thus fulfill a central goal of value alignment. Yet today, we lack computational models explaining such language use. To address this challenge, we formalize learning from language in a contextual bandit setting and ask how a human might communicate preferences over behaviors. We study two distinct types of language: $\textit{instructions}$, which provide information about the desired policy, and $\textit{descriptions}$, which provide information about the reward function. We show that the agent's degree of autonomy determines which form of language is optimal: instructions are better in low-autonomy settings, but descriptions are better when the agent will need to act independently. We then define a pragmatic listener agent that robustly infers the speaker's reward function by reasoning about $\textit{how}$ the speaker expresses themselves. We validate our models with a behavioral experiment, demonstrating that (1) our speaker model predicts human behavior, and (2) our pragmatic listener successfully recovers humans' reward functions. Finally, we show that this form of social learning can integrate with and reduce regret in traditional reinforcement learning. We hope these insights facilitate a shift from developing agents that $\textit{obey}$ language to agents that $\textit{learn}$ from it.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com