Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How GNNs Facilitate CNNs in Mining Geometric Information from Large-Scale Medical Images (2206.07599v1)

Published 15 Jun 2022 in eess.IV and cs.CV

Abstract: Gigapixel medical images provide massive data, both morphological textures and spatial information, to be mined. Due to the large data scale in histology, deep learning methods play an increasingly significant role as feature extractors. Existing solutions heavily rely on convolutional neural networks (CNNs) for global pixel-level analysis, leaving the underlying local geometric structure such as the interaction between cells in the tumor microenvironment unexplored. The topological structure in medical images, as proven to be closely related to tumor evolution, can be well characterized by graphs. To obtain a more comprehensive representation for downstream oncology tasks, we propose a fusion framework for enhancing the global image-level representation captured by CNNs with the geometry of cell-level spatial information learned by graph neural networks (GNN). The fusion layer optimizes an integration between collaborative features of global images and cell graphs. Two fusion strategies have been developed: one with MLP which is simple but turns out efficient through fine-tuning, and the other with Transformer gains a champion in fusing multiple networks. We evaluate our fusion strategies on histology datasets curated from large patient cohorts of colorectal and gastric cancers for three biomarker prediction tasks. Both two models outperform plain CNNs or GNNs, reaching a consistent AUC improvement of more than 5% on various network backbones. The experimental results yield the necessity for combining image-level morphological features with cell spatial relations in medical image analysis. Codes are available at https://github.com/yiqings/HEGnnEnhanceCnn.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com